45(129)=16t^2+45

Simple and best practice solution for 45(129)=16t^2+45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45(129)=16t^2+45 equation:



45(129)=16t^2+45
We move all terms to the left:
45(129)-(16t^2+45)=0
We get rid of parentheses
-16t^2-45+45129=0
We add all the numbers together, and all the variables
-16t^2+45084=0
a = -16; b = 0; c = +45084;
Δ = b2-4ac
Δ = 02-4·(-16)·45084
Δ = 2885376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2885376}=\sqrt{73984*39}=\sqrt{73984}*\sqrt{39}=272\sqrt{39}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-272\sqrt{39}}{2*-16}=\frac{0-272\sqrt{39}}{-32} =-\frac{272\sqrt{39}}{-32} =-\frac{17\sqrt{39}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+272\sqrt{39}}{2*-16}=\frac{0+272\sqrt{39}}{-32} =\frac{272\sqrt{39}}{-32} =\frac{17\sqrt{39}}{-2} $

See similar equations:

| 10t–16=34 | | 12u+5u+61=180 | | 3(5+5y)=2(-5+4y) | | 2x+16=6x+9-5 | | 45(119)=16t^2+45 | | 45(t)=16t^2+45 | | 2w+7w+36=180 | | t=16t^2+32t+240 | | 2(5x+8)=86 | | x^2+18x+14=180 | | -9s+3=57 | | -92-15x=-8x+55 | | 14a-(2a+9)=2/3(12a-18) | | 3.14*17+2/1=x | | 2x+41=10x+9 | | 10x-32=3x-4 | | 3*(x+.75)=5.88 | | 11+x+1+6x=-3x+8x | | 2x+20=18= | | 13+6m=4m+7 | | 2.5+.15p=0.4p | | 4/5x-15=2 | | 5t+2t=0 | | 2/7x+10=36 | | 4m+8=6m-8 | | 177=-20n+20-3 | | -113=-8-35+14x | | -4+32x=92 | | x–48=25 | | 9x-28=2x-7 | | n/2-4=-13 | | 7+3u=11 |

Equations solver categories